
Secure Tracking in Sensor Networks
Chih-Chieh Geoff Chang

North Carolina State University
geoff chang@ncsu.edu

Wesley E. Snyder
North Carolina State University

wes@ncsu.edu

Cliff Wang
U.S. Army Research Office

cliff.wang@us.army.mil

Abstract— Target tracking is a canonical issue in sensor net-
works research. However, tracking security has gained little or
no attention. Once a sensor node is compromised, it will be able
to inject false location information into the network, and those
nodes receiving such information will suffer greatly in terms of
tracking precision. This paper, to the best of our knowledge,
is the first to explore the topic of security in the context of
Bayesian tracking for sensor networks. We propose to activate
more than one nodes at each time step, and use a relaxation
labeling algorithm to detect malicious nodes whose reports are
then removed. Simulations based on both linear and nonlinear
motion models demonstrate that out algorithm works better than
simply averaging over the results based on the redundant sets of
nodes.

I. INTRODUCTION

Target tracking is a canonical issue in sensor networks
research [1]. It is essential to be able to predict the current and
future locations of the objects of interest, say, in environmental
monitoring or homeland security applications. Target tracking
in sensor networks was first proposed to be solved using
traditional tracking algorithms such as Bayesian [2], extended
Kalman filter [3] or particle filter [4]. Recent research has seen
more sophisticated tracking algorithms for sensor networks.
For example, [5] and [6] propose distributed particle filters;
while [7] proposes decentralized sigma-point information
filters for target tracking. Another related and important issue
is classification of the motion model of the target(s), and [8]
proposes joint multiple-target tracking and classification.

However, tracking security has gained little or no attention.
Once one or more of the nodes are compromised, they could
generate false measurements or false target-state predictions
into the network, and those nodes which receive such
information will not be able to produce correct target state
estimates. [9] explores a topic similar to tracking security by
proposing a protocol to securely verify the time of encounters
in multi-hop networks. However, [9] did not address the
security issue in the context of Bayesian tracking.

This paper, to the best of our knowledge, is the first paper
on secure Bayesian tracking in sensor networks. We propose
a new relaxation labeling algorithm to detect malicious nodes.
The rest of this paper is organized as follows. Section II
describes our system models in terms of tracking. Section
III defines the problem, and Section IV proposes a secure-
tracking solution. Section V and VI are experimental results
and conclusions, respectively.

II. OVERVIEW ON TARGET TRACKING

A. System Models

A target-tracking problem is to estimate the states of the tar-
get(s) based on sensor-node measurements. In target tracking,
two models form the foundation of all algorithms: the motion
model [10] of the target positions and the measurement model
of the sensor nodes. Consider the evolution of state sequence
{xk, k ∈ N} of a target given by

xk = fk(xk−1,vk−1) (1)

where xk is the state of the target at time k, fk is a possibly
nonlinear function, vk−1 is an i.i.d. noise sequence, and N is
the set of natural numbers.

The other model of interest is the measurement model of the
sensor nodes.Among the various sensor models for different
types of sensor nodes, we will use the amplitude sensor
model [11] since it models a general amplitude measurement
and can be applied to many different types of signals

zi
k =

a

|xk − si| p
2

+ nk (2)

where a is the amplitude of the signal emitted from the target
and it is assumed to be known. In (2), si is the known location
of node i, and p is the attenuation factor.

B. Tracking Algorithm

In a tracking problem, our purpose is to estimate the belief
p(xk|z1:k) at each time step k. We generally have two stages
at each time step k: prediction and update. Suppose that the
required pdf p(xk−1|z1:k−1) is available. In the prediction
stage, we obtain the prior pdf of xk via the Chapman-
Kolmogorov equation

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3)

In (3), the probabilistic model of p(xk|xk−1) is defined by
(1) and the known statistics of vk−1.

As the measurement zk becomes available for node i, we
may finally obtain the desired p(xk|z1:k). This is called the
update stage, and Bayes rule is used as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4)

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Secure Tracking in Sensor Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
North Carolina State University,Raleigh,NC,27695

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002055. Proceedings of the 2007 IEEE International Conference of Communications (ICC
2007) Held in Glasgow, Scotland on June 24-28, 2007. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

where the normalizing constant

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk−1 (5)

depends on the belief p(zk|xk) defined by (2). The recursive
prediction and update relations of (3) and (4) form the optimal
Bayesian solution to the tracking problem.

In practice, we use the bootstrap filter algorithm [12]
to simulate the prediction and update stages since the the
measurement model in (2) and the motion model in (1) can
both possibly be nonlinear. We will only briefly describe
the bootstrap filter algorithm here, for details and proofs,
please refer to [12]. To initiate the algorithm, N samples
{x0(i), i = 1, · · · , N} are drawn from the known prior, p(x0)
and

∑
i x0(i) = 1. At the prediction stage, each sample

xk−1(i) is passed through the system model to obtain samples
from the prior at time step k: x∗

k(i) = fk−1(xk−1(i),vk−1(i)),
where vk−1(i) is a sample drawn from the pdf of the nose
p(vk−1) in (1).

At the update stage, on receipt of the measurement zk,
we evaluate the likelihood of each prior sample and obtain
a normalized weight, qi, for each sample

qi =
p(zk|x∗

k(i))∑N
j=1 p(zk|x∗

k(j))
(6)

To avoid the degeneracy problem [13] in particle filter meth-
ods, we will resample the sample and weight pair (x∗

k, qi) for
i = 1, · · · , N times. The resampling procedure is performed
by drawing a random sample ui from the uniform distribution
over (0, 1]. The value x∗

k(M) corresponding to

M−1∑
j=0

qj < ui ≤
M∑

j=0

qj (7)

is selected as a sample for the posterior. Note that in (7),
q0 = 0. After the resampling has been done for i = 1, · · · , N
times, we obtain the new samples {xk(i), i = 1, · · · , N} so
that for any j, Pr{xk(j) = x∗

k(i)} = qi.

Note that in particle filter algorithms, the samples
{xk(i), i = 1, · · · , N} approaches p(xk|zk) as N asymptoti-
cally gets larger.

III. PROBLEM DEFINITION

A. Assumptions

〈1〉 We assume that malicious nodes can successfully au-
thenticate with the sensor network, and their data can be
encrypted with the same key shared with other nodes in the
network. 〈2〉 We define malicious nodes to be colluding - they
will always report p(x|z) whose mean lies on a incorrect,
fictitious path. That is to say, at the same time step, those
malicious nodes will point to the same location on the fictitious
path. Hence regardless what information from the previous
time step is passed to the malicious node, it will produce

the false p(x|z) whose mean lies on the fictitious path. The
colluding behavior is also what distinguishes malicious nodes
from ordinary malfunctional nodes. Figure 1 illustrates a six-
node scenario, in which node 3 and node 5 are malicious.
〈3〉 We assume a centralized scenario in which a central
processing unit will collect tracking reports from the sensor
nodes, determine which of them are malicious and remove
them. 〈4〉 The purpose of the fictitious path is to allow the
enemy to avoid surveillance. However, the fictitious path does
not go beyond the sensing range of the nodes or violate the
motion model in (1). A rigorous analysis of different behaviors
of malicious nodes under the motion model is an ongoing
work. 〈5〉 We assume that sensor nodes at successive time
steps are positioned so close that they form a clique, i.e. they
have unlimited communication bandwidth among each other.

fictitious path

correct path

�

���

0
�

���

1
����
2

��
��

3
�

���

4 ��
��

5

Fig. 1. We have 6 active sensor nodes in the network, which are denoted
as 0 through 5. The lower path is the true target path; while the upper one is
fictitious. In this scenario, all malicious nodes will report the upper path, i.e.
Nodes 3 and 5 are maliciuos

B. Problem Definition

We assume a Bayesian tracking scenario as defined in (3),
(4) and (5). Since information from the node at previous
time step is crucial in predicting the current target location,
activating only one node at a time [2] will have serious
security problems. Hence we activate at least two sensor
nodes at each time step. Meanwhile, an unknown number of
the nodes are malicious and injecting false tracking reports
into the network. The problem is to detect those malicious
nodes, and to provide a correct target path.

IV. SECURE TRACKING ALGORITHM

We propose a secure tracking algorithm based on relaxation
labeling [14]–[16]. First, we activate two nodes at a time, as
illustrated in Figure 2. Let us begin with time step t = 0,
when the initial position of the target, p(x0), is assumed to
be know. p(x0) is passed to the two nodes activated at time
step t = 1. After calculating p(x1|z1) using particle filter
algorithms, the nodes at t = 1 will pass their beliefs to the
nodes at t = 2. Since each node at t = 2 has two p(x1|z1)
from t = 1, it will produce two different p(x2|z2). What if,
in Figure 2, node 1 is malicious, and node 2 and node 3 are
benign? Then the two p(x2|z2) calculated by node 3 would
be drastically different.

Following such logic, we design our relaxation labeling
algorithm based on sets of three nodes, which we denote as
triples. There are three types of triples:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

�������

������

0

� �
�

�
�

���

1

�	
	

	
		

�
2

�

���
		
3

�

���
		

4

t = 0 t = 1 t = 2

Fig. 2. At t = 0, P (x0) is known, and this information is passed to the
two nodes activated at t = 1. Using particle filter algorithm, node 1 and node
2 can each calculate p(x1|z1), and they are passed to node 3 and node 4.
Both node 3 and node 4 have two inputs, hence will produce two distinctive
p(x2|z2), respectively

1) Type I : a triple consisting of two predecessor nodes
and one successor nodes. For example, nodes (1,2,3)
and (1,2,4) in Figure 2

2) Type II: a triple consisting of one predecessor node and
two successor nodes. For example, nodes (1,3,4) and
(2,3,4) in Figure 2

3) Type III: a triple consisting solely of nodes at the same
time instant. For example, nodes (1,2,3) and (4,5,6)

In our algorithm, the nodes in a Type III triple do not pass
information to each other, hence we will only use Type I and
Type II triples in our algorithm.

A. Type I Triples

In this section, we focus on Type I triples and how we
define the compatibility function for them. In Figure 3(a),
we illustrate a Type I triple, and we denote the predecessor
nodes as p1 and p2; and the successor node as s.

�������

p1

��

p2

�

���
		
s

�������
�p

�
s1

�s2

(a) (b)

t t + 1 t t + 1

Fig. 3. Two predecessor nodes passing information to one successor node.

Both node p1 and node p2 pass information to node s, hence
node s can examine the difference between the two beliefs that
it produces. We denote the belief that node s calculates based
on the belief of node p1 as p1(x|z). Similarly, we denote the
other belief that node s calculates as p2(x|z). We can quantify
their difference as

d = ||
∫

x[p1(x|z) − p2(x|z)]dx|| (8)

where || · || denotes the Euclidean distance.

If node s is malicious, then regardless of what were passed
to it from its predecessors, node s will report a p(x|z) whose
mean falls on the fictitious path. Hence d should be close
to 0 if node s is malicious. If node s is benign, there are

three cases: (i) One of its predecessor is malicious (the other
benign). (ii) Both nodes p1 and p2 are malicious (iii) Both
nodes p1 and p2 are benign. If node s is benign, and one of
its predecessor is malicious, the outputs from node s would
disagree on each other. Hence we expect d to be large in case
(i). However, cases (ii) and (iii) are basically the same, since
in case (ii), the two malicious nodes are colluding and both
point to the fictitious path. Hence in both case (ii) and (iii),
we expect d to be small. We list all the possible cases for a
Type I triple in Table I. Note that in Figure 2, the behaviors
of Table I apply to nodes (1, 2, 3) and (1, 2, 4).

Predecessor 1 Predecessor 2 Successor Behavior
malicious malicious malicious d � 0
malicious malicious benign d small
malicious benign malicious d � 0
malicious benign benign d large

benign malicious malicious d � 0
benign malicious benign d large
benign benign malicious d � 0
benign benign benign d small

TABLE I

EXPECTED BEHAVIORS IN d FOR A TYPE I TRIPLE

B. Type II Triples

In a Type II triple, one predecessor node will pass its
p(x|z) to two different successors. We highlight such a
scenario in Figure 3(b). We call the predecessor node p, and
the two successors node s1 and s2. Assuming that node p is
benign, and one of the successors is malicious (and the other
benign), the outputs from the two successor nodes would be
different. Again, we can exploit the inconsistency whenever
the nodes are behaving differently.

We denote the belief that node s1 calculates as p1(x|z),
and the belief that node s2 calculates as p2(x|z). Then we
can calculate the difference between p1(x|z) and p2(x|z)
using (8).

Regardless of whether node p is malicious or not, as long
as one successor is malicious and the other is not, we expect
d to be large. What if both of node s1 and node s2 are
benign? Since they are given the same input from node p,
their outputs should be similar because they are both benign
nodes. Hence we expect d to be small when both of node s1
and node s2 are benign. If both of node s1 and node s2 are
malicious, we expect d � 0, since no matter what their inputs
are, they will report the fictitious path. We list all 8 possible
behaviors in Table II.

C. Details of the Algorithm

The expected behaviors in Table I and II are the core of
our relaxation labeling algorithm. We define a compatibility
function, r, based on d as follows

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Predecessor Successor 1 Successor 2 Behavior
malicious malicious malicious d � 0
malicious malicious benign d small
malicious benign malicious d small
malicious benign benign d small

benign malicious malicious d � 0
benign malicious benign d large
benign benign malicious d large
benign benign benign d small

TABLE II

EXPECTED BEHAVIORS IN d FOR A TYPE II TRIPLE

r =

{
2e−αd − 1, if d small or 0

2
1+e−α(d−β) − 1, if d is large (9)

where α and β are parameters. Note that the compatibility
function r will always return a value between -1 and 1. The
higher the value that r returns, the more compatible the 3
nodes are. For example, in Figure 2, if we assume node 1 is
malicious, node 2 is benign, and node 3 is malicious, then
we expect d � 0, as in Table I. We then calculate r using
1 − 2

1+e−α(d−β) . If the assumption that node 1 is malicious,
node 2 is benign, and node 3 is malicious is indeed true, then
the empirical data, d, should lead r to return a value close
to 1. Otherwise, it should return a negative number which is
larger than -1.

We illustrate some parameter settings of (9) in Figure 4.
In Figure 4(a), we expect d to be small, hence a small d will
lead r to return a value close to 1. On the other hand, we
expect d to be large in Figure 4(b), hence a large d will make
r return a value close to 1.

(a) r for d small or 0 (b) r for d large

Fig. 4. Illustration of some parameter settings in (9)

So if we assume node 1 is malicious, how is that compatible
with, say, node 2 being malicious and node 3 benign? How
about node 1 being malicious, node 2 and 3 both being benign?
In each possible case, we can calculate the compatibility
function r using (9). We denote malicious as λ0 and benign
as λ1, and we define a function q which accumulates all the
effects of labeling node i as λ

qt
i(λ) =

1
N

∑
j

∑
k

∑
λ′

Pj(λ′)
∑
λ′′

Pk(λ′′)r(·), (10)

where N = (n − 1)(n − 2), n is the number of nodes in the
network, j = 1, ..., n, k = 1, ..., n, j �= i, k �= i, j �= k, and
P (·) is a confidence function to be defined and explained
later. Hence in (10), qt

i(λ) is a way to tally all the possibilities
when we label node i as λ, label node j as λ′ and label
node k as λ′′. Note that in (10), t is the iteration number,
since the relaxation labeling algorithm is an iterative process.
Furthermore, in (10), we exclude all the cases that node i, j
and k are at the same time step in the tracking process.

Finally, we define the confidence P (λ). The confidence of
node i having label λj is denoted as Pi(λj). The confidence
Pi(λj) has probability-like properties:

0 ≤ Pi(λj) ≤ 1
∑

j

Pi(λj) = 1. (11)

Note that in (11), we only have two labels, hence j = 0, 1.
Following [14], we will iteratively update the confidence of
node i having label j as

P t+1
i (λj) =

P t
i (λj) [1 + qt

i(λj)]
Dt

i

, (12)

where Dt
i =

∑
j P t

i (λj) [1 + qt
i(λj)] is a normalization

required to ensure that Pi(λj) sums to 1, and t stands for
iteration. If after many iterations, P 100

2 (λ0) converges to 1,
while P 100

2 (λ1) converges to 0, then node 2 is found to be
malicious.

It is also possible to activate more nodes at each time step,
as shown in Figure 5. What is more, if we have more than
3 nodes, we can not only do tracking, but also localization
of the target. This will provide added security mechanism
using the secure localization algorithms. We summarize the
algorithm in Table III.

time t = k Receive p(xk−1|zk−1)
(if k == 1, p(x0|z0) ≡ p(x0) is known)
Activate n nodes
Node i calculates pi(xk|zk)

time t = k + 1 Activate n nodes
Each node receives pi(xk|zk), i = 1, . . . , n
Node j calculates pj(xk+1|zk+1), j = 1, . . . , n
Use relaxation labeling algorithm
Remove malicious nodes
Average the results to obtain p̂(xk+1|zk+1)

time t = k + 2 Go to time t = k; use the same algorithm except
k is replaced with (k + 2)
p(xk−1|zk−1) is replaced with p̂(xk+1|zk+1)

TABLE III

SECURE TRACKING ALGORITHM USING RELAXATION LABELING

V. EXPERIMENTS

The target is traveling along a one-dimensional space with
the following motion model

xt = xt−1 + 0.25 + wt−1 (13)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

�	
	

�
��

�

� �
�
�
�
��

�
��

�	
	

�

�
��

�	
	

�
�
�
��

�

�

�
���

�
���
�		
�
���
���
���

		

�
��

��
��

�

�
�
�
��

�
�

��
�

�
��

�	
	

�	
	

��

�
�
��

�

�
���

�
���
�		
�
���
���
���

		

�
��

��
��

�

�
�
�
��

�
�

��
�

�
��

�	
	

�	
	

��

�
�
��

�

�
���

�
���
�		
�
���
���
���

		

�
��

��
��

t = 0t = 1t = 2 t = 3t = 4 t = 5t = 6

Fig. 5. Illustration of the relaxation labeling algorithm. The rectangular box
stands for the central processing unit. At each time step (except time 0), we
activate 3 nodes. For every 3 nodes (except time 0), we perform relaxation
labeling algorithm to detect malicious nodes. After removing malicious nodes
and average the results from benign nodes, the relaxation labeling algorithm
produces a correct result and pass it on to the next time step.

where wt−1 is the process noise, and its variance is 0.1. The
initial position of the target, x0, is also 0.1. The sensor model
is

yt =
20

|xt − si| + vt (14)

where vt is the measurement noise, whose variance is 1.0.
We simulate the path of the target over 25 time steps, and it
is illustrated in Figure 6(a).

(a) xt (b) yt

Fig. 6. System setup for the experiment.

We evenly deploy 15 sensor nodes within [0, 30]. At each
time step, we will activate 3 sensor nodes. At time t = k, we
activate the 3 closest nodes to the target position at t = k−1.
At time t = k, we do not know the current target position
until sensor nodes are activated and measurements are made,
hence selecting nodes based on the target position at t = k−1
is a logical choice. Since we activate 3 nodes at each time
step, we denote the closest nodes as set 1, the second-closest
nodes as set 2, and so on. We denote si

k as the node in
set i at time step t = k; for example, s1

20 stands for the
closest node (to x19) at time step 20. The measurements from
the 3 sets of nodes activated are also illustrated in Figure 6(b).

To create attacks, we make an artificial target path which
is a line from x = 20 at t = 0 to x = 30 at t = 25. We
replace one node at each time steps from 5 to 22 with an
malicious node which always reports the target position on
the fictitious line. The malicious nodes are: s1

5, s1
6, s1

7, s2
8, s1

9,
s3
10, s2

11, s1
12, s2

13, s2
14, s2

15, s3
16, s3

17, s1
18, s3

19, s2
20, s3

21, s3
22.

There is no malicious node at time steps t ≤ 4 or t ≥ 23.

After applying relaxation labeling to the 6 nodes at time
steps t = 5, 6, we show the probability of each node being

Fig. 7. Probability for being malicious for the 6 nodes at time steps 5 and
6.

Fig. 8. Tracking performance for activating 3 nodes at each time step. From
t = 5 to t = 22, there is one malicious node at each time step.

malicious, p(λ0), in Figure 7. We can clearly see that p(λ0)
for the two malicious nodes indeed goes up to 1, while p(λ0)
for benign nodes go down to 0. Hence we will remove s1

5

and s1
6.

Next we apply the relaxation labeling algorithm to t = 7, 8,
t = 9, 10, · · · to t = 21, 22, and we show the tracking
performance in Figure 8. Due to the limitation of space, we
do not show the probability of all the nodes (as we did in
Figure 7), but the results for all nodes from t = 5 to t = 22
are all correct.

In order to compare the performance of our algorithm, the
tracking result without relaxation labeling is also computed.
The 3 sets of nodes work independently. As a result, we
obtain 3 separate paths based on 3 different sets of nodes. We
then take average of the 3 paths, and the result is shown in
Figure 8. The mean-square error (mse) for the tracking result
using relaxation labeling, as compared to the true target path,
is 12.107. On the other hand, the mse for the tracking result
without relaxation labeling is 139.293.

As a twist, we repeat our previous experiment, except
making two nodes malicious at the same time steps. We
select these nodes are malicious nodes: s1

6, s2
6, s1

8, s3
8, s2

10,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Fig. 9. Probability for being malicious for the 6 nodes at time steps 7 and
8.

Fig. 10. Tracking performance for activating 3 nodes at each time step. There
are two malicious nodes at time steps t = 6, 8, 10, 12, 14, 16, 18, 20, 22.

s3
10, s1

12, s2
12, s1

14, s3
14, s2

16, s3
16, s1

18, s2
18, s1

20, s3
20, s2

22, s3
22.

After applying relaxation labeling algorithms, we successfully
detect all malicious nodes in the network. For example, the
result on t = 7 and t = 8 are illustrated in Figure 9. We
can see that the probability of being malicious for s1

8 and
s3
8 indeed converges to 1. The tracking performance in this

experiment is shown in Figure 10. We can observe that
although we activate 3 nodes as redundancy in tracking, the
malicious nodes still have lasting effects in tracking. Even
after we average the results of 3 nodes, we can still see
that malicious nodes are successfully at misleading the path,
especially at time steps t = 12, 14, 16, 18, 20, 22 in Figure 10.
On the other hand, the result using relaxation labeling is less
effected by the malicious nodes since they are removed. The
mse for the 25 time steps is 13.382 with relaxation labeling
and 181.803 without relaxation labeling.

VI. CONCLUSION

We explore a new topic of security in the context of
Bayesian tracking in sensor networks. A new algorithm based
on relaxation labeling is proposed to detect colluding ma-
licious nodes. We activate at least two nodes at each time
step, and inconsistency, if any, between the tracking outputs at
successive time steps are exploited. Simulations based on both

linear and nonlinear motion models show that out algorithm
works better than simply averaging over the results based on
the redundant sets of nodes.

ACKNOWLEDGMENT

This project is supported by United States Army Research
Office grant W911NF-04-D-003.

REFERENCES

[1] F. Zhao and L. J. Guibas, Wireless sensor networks: an information
processing approach. Morgan Kaufmann Publishers, 2004.

[2] J. Liu, J. Reich, and F. Zhao, “Collaborative in-network processing for
target tracking,” EURASIP Journal on Applied Signal Processing, vol. 4,
pp. 378 – 391, March 2003.

[3] R. R. Brooks, C. Griffin, and D. S. Friedlander, “Self-organized dis-
tributed sensor network entity tracking,” The International Journal of
High Performance Computing Applications, vol. 16, no. 3, pp. 207 –
219, Fall 2002.

[4] X. Sheng and Y. H. Hu, “Sequential acoustic energy based source
localization using particle filter in a distriuted sensor network,” in IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 3, May 2004, pp. 17 – 21.

[5] M. Coates, “Distributed particle filters for sensor networks,” in The Third
International Symposium on Information Processing in Sensor Networks,
26 - 27 April 2004, pp. 99 – 107.

[6] X. Sheng, Y.-H. Hu, and P. Ramanathan, “Distributed particle filter with
gmm approximation for multiple targets localization and tracking in
wireless sensor network,” in The Fourth International Symposium on
Information Processing in Sensor Networks, 15 April 2005, pp. 181 –
188.

[7] T. Vercauteren and X. Wang, “Decentralized sigma-point information
filters for target tracking in collaborative sensor networks,” IEEE Trans-
actions on Signal Processing, vol. 53, no. 8.2, pp. 2997 – 3009, August
2005.

[8] T. Vercauteren, D. Guo, and X. Wang, “Joint multiple target tracking
and classification in collaborative sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 4, pp. 714 – 723, April
2005.

[9] S. Capkun, L. Buttyan, and J.-P. Hubaux, “Sector: secure tracking of
node encounters in multi-hop wireless networks,” in ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN), 2003, pp. 21 – 32.

[10] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking:
dynamic models,” in Proceedings of SPIE Conference on Signal and
Data Pocessing of Small Targets, O. E. Drummond, Ed., vol. 4048, July
2000, pp. 212 – 235.

[11] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor networks,”
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUT-
ING APPLICATIONS, vol. 16, no. 3, Fall 2002.

[12] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear and non-gaussian bayesian state estimation,” IEE Proceedings-
F (Radar and Signal Processing), vol. 140, no. 2, pp. 107 – 113, April
1993.

[13] M. Arulampalam and S. M. andN. Gordon andT. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174 – 188,
February 2002.

[14] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling
by relaxation operations,” IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-6, no. 6, pp. 420 – 433, June 1976.

[15] R. A. Hummel and S. W. Zucker, “On the foundations of relaxation
labeling processes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 5, no. 3, pp. 267 – 287, May 1983.

[16] J. Kittler and J. Illingworth, “Relaxation labeling algorithms - a review,”
Image and Vision Computing, vol. 3, no. 4, pp. 206 – 216, 1985.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

	Select a link below
	Return to Main Menu

